고등학교 1학년 6월 대학수학능력시험 모의고사입니다,.... 아 물론 고등학교 1학년 수준이고요... 좀 풀어주세요 너무 어려워요!
20. 두 자연수 a, b의 공약수를 N(a, b)라고 하자. 전체집합 U= {x|x는 100 이하 자연수} 이것의 부분집합 Ak(a)={x|N(그림을 봐주세요.)} 라고 할 때, 보기에서 옳은 내용을 있는 대로 고른 것은?
ㄱ. (그림을 봐주세요.)
ㄴ. 집합 A3(4)의 원소 개수는 23개이다.
ㄷ. a가 소수이면 집합 A2(a)의 원소의 개수는 [100/a] 이다. (단, [x]는 x보다 크지 않은 최대의 정수이다.)
1 ㄱ 2 ㄴ 3 ㄱ,ㄷ 4 ㄴ,ㄷ 5 ㄱ,ㄴ,ㄷ
もしこれ解いてくださることができるんでしょうか;
高等学校 1年生 6月大学修学能力試験模擬試験です,.... 勿論高等学校 1年生水準で... ちょっと解いてくださいとても難しいです!
20. 二つの自然数 a, bの公約数を N(a, b)としよう. 全体集合 U= {x|xは 100 以下自然数} これの部分集合 Ak(a)={x|N(絵を見てください.)} とする時, 表示で正しい内容をあるとおり選んだことは?
. (絵を見てください.)
. 集合 A3(4)の元素個数は 23個である.
. aが少数なら集合 A2(a)の元素の個数は [100/a] である. (ただ, [x]は xより大きくない最大の定数だ.)
1 2 3 , 4 , 5 ,,